In-depth comparison of the Berlekamp - Massey - Sakata and the Scalar-FGLM algorithms: the non adaptive variants

نویسندگان

  • Jérémy Berthomieu
  • Jean-Charles Faugère
چکیده

We compare thoroughly the Berlekamp – Massey – Sakata algorithm and the Scalar-FGLM algorithm, which compute both the ideal of relations of a multidimensional linear recurrent sequence. Suprisingly, their behaviors differ. We detail in which way they do and prove that it is not possible to tweak one of the algorithms in order to mimic exactly the behavior of the other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Berlekamp-Massey decoding of algebraic-geometric codes up to half the Feng-Rao bound

E FFICIENT decoding of BCHand Reed-Solomon codes can be done by using the Berlekamp-Massey algorithm [ 11, and it is natural to try to use the extension to N dimensions of Sakata [2] to decode algebraic-geometric codes. For codes from regular plane curves this was done in [3] and using the Feng-Rao majority scheme from [4], the procedure was extended in [S] and [6]. For a class of space curves ...

متن کامل

Inverse-free Berlekamp-Massey-Sakata Algorithm and Small Decoders for Algebraic-Geometric Codes

This paper proposes a novel algorithm for finding error-locators of algebraic-geometric codes that can eliminate the division-calculations of finite fields from the Berlekamp– Massey–Sakata algorithm. This inverse-free algorithm provides full performance in correcting a certain class of errors, generic errors, which includes most errors, and can decode codes on algebraic curves without the dete...

متن کامل

Fast decoding of algebraic-geometric codes up to the designed minimum distance

We present a decoding algorithm for algebraicgeometric codes from regular plane curves, in particular the Hermitian curve, which corrects all error patternes of weight less than d*/2 with low complexity. The algorithm is based on the majority scheme of Feng and Rao and uses a modified version of Sakata’s generalization of the Berlekamp-Massey algorithm.

متن کامل

A On The Matrix Berlekamp-Massey Algorithm

We analyze the Matrix Berlekamp/Massey algorithm, which generalizes the Berlekamp/Massey algorithm [Massey 1969] for computing linear generators of scalar sequences. The Matrix Berlekamp/Massey algorithm computes a minimal matrix generator of a linearly generated matrix sequence and has been first introduced by [Rissanen 1972a], [Dickinson et al. 1974] and [Coppersmith 1994]. Our version of the...

متن کامل

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.07168  شماره 

صفحات  -

تاریخ انتشار 2017